
Synthia: a Generic and Flexible Data Structure Generator
Marc-Antoine Plourde

Université du Québec à Chicoutimi
Canada

Sylvain Hallé
Université du Québec à Chicoutimi

Canada

ABSTRACT
Synthia is a versatile, modular and extensible Java-based data struc-
ture generation library. It is centered on the notion of “pickers”,
which are objects producing values of a given type on demand.
Pickers are stateful and can be given as input to other pickers; this
chaining principle can generate objects whose structure follows a
complex pattern. The paper describes the core principles and key
features of the library, including test input shrinking, provenance
tracking, and object mutation.

KEYWORDS
synthetic data generation, fuzzing, test reduction

ACM Reference Format:
Marc-Antoine Plourde and Sylvain Hallé. 2022. Synthia: a Generic and Flex-
ible Data Structure Generator. In 44th International Conference on Software
Engineering Companion (ICSE ’22 Companion), May 21–29, 2022, Pittsburgh,
PA, USA.ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3510454.
3516834

1 INTRODUCTION
The problem of generating synthetic data that mimics a real-world
counterpart can find a purpose in many situations. A long-standing
line of research has focused on fuzzing, which is the generation of
(random or structured) data fed to a system component with the
goal of discovering inputs causing crashes or failures [7]. Artificial
data also proves useful outside bug finding: for instance, it can be
used to fake the operation of a system component, forming the basis
of a development aid called a stub or mock object [9]. In addition,
contrary to real-world data, synthetic inputs can be generated ac-
cording to a number of configurable parameters, making it possible
to perform controlled experiments by varying these parameters and
measuring their effect on some aspect of a system [8].

This paper presents Synthia, a Java library for the generation
of synthetic inputs of various kinds. It was built with three de-
sign goals. The first is versatility: the library collates under a
uniform framework functionalities that are typically handled by
distinct tools. Objects implementing Synthia’s Picker interface
can generate scalars, composite data structures, or sequences of
objects according to a formal grammar or a Markov chain, among
others. Besides classical fuzzing, Synthia supports automated test
input shrinking, object mutation, provides a framework for monkey

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9223-5/22/05. . . $15.00
https://doi.org/10.1145/3510454.3516834

testing reactive systems, and implements a rudimentary form of
provenance tracking. Variants of these pickers make it possible to
use them as stateful mock objects.

The second ismodularity: most Picker objects in the library
are instantiated by passing instances of other pickers which they use
as sources of “choices”. Thus, an arbitrarily complex chain of pickers
can serve as the input of another one, and result in drastically
different objects of a given type being produced depending on the
precise way these pickers are passed to each other. This distinctive
feature gives its name to the library: it follows the operation of
analog synthesizers of the 1970s, which used signal generators and
modules connected by patch cables to produce various sounds.

Finally, the library also favors extensibility: its core is formed
of a small number of elementary pickers, which are complemented
by domain-specific extensions. Moreover, a user can create its own
picker objects as Java classes following the Picker interface, and
these pickers can then be used along the other pickers provided by
the library. Synthia is implemented in Java and is available under
an open source license.1 Its current version consists of roughly
5,300 LOC, comes with a complete API documentation and includes
dozens of code examples.

2 FUNDAMENTAL CONCEPTS
In the following, we describe the core principles of Synthia.

The Picker Interface. The fundamental object in Synthia is called
a picker. Its basic task is to return (i.e. “pick”) an object of given type
T every time it is asked. To this end, the Java interface Picker<T>
declares a no-args method called pick; it is up to each concrete
picker class to implement whatever logic is required to produce the
said object.

It is important to note that the use of a picker does not entail the
presence of randomness. As we shall see, a picker for integers may
return a pseudo-randomly generated number, but may also produce
a sequence of outputs following a regular pattern, or even a single
constant value. In addition, pickers are stateful: the output they
produce may depend on other outputs returned on previous calls
to pick. Hence, the Tick picker returns a number that increments
by a given amount upon each successive call, and acts as a form
of counter; the Playback picker iterates over a list of predefined
values, and loops around once the list is exhausted.

Because of their stateful nature, every picker is required to imple-
ment two additional methods called reset and duplicate. Method
reset restores the picker to its uniquely-defined initial state. This
means that successive calls to pick from this point on reproduce
the same sequence of values as when the object was constructed.2
Method duplicate creates a copy of the picker; this copy can ei-
ther be stateless or stateful. A stateless copy amounts to creating

1https://github.com/liflab/synthia
2This trait can be declared for other objects with an interface called Resettable,
which will be mentioned in Section 4.

ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA Marc-Antoine Plourde and Sylvain Hallé

r θ

b 0

m 2π

42

[1,2]

42

(a) Variation 1

r θ

42 π/43

(b) Variation 2

r θ

42

[0, ,π,]π/2 π/23

b 1

m 2

42

(c) Variation 3

r θ

π/6

s δ

42

[0, ,π,]π/2 π/23

s δ

/61

[0,1]

42

(d) Variation 4

Figure 1: Multiple ways of parameterizing a HyperspherePicker, and the possible sets of values each can produce.

a new instance obtained by calling the constructor with the same
arguments as the original; on its side, a stateful copy places the
new instance in the same internal state as the current state of the
original. Note that this requirement applies to all pickers, including
those generating pseudo-random numbers. Pseudo-random pick-
ers implement an additional interface called Seedable, declaring
a method called setSeed that can be used to explicitly define the
seed value used as the starting point of the generation.

The core Synthia library provides more than a dozen pickers for
producing commonly used values, such as Booleans, numbers and
strings. PickElement picks an element from a set based on proba-
bilities associated to each element. Synthia also provides pickers for
generating common composite data structures. PickList generates
a list of elements of type T ; PickSet and PickArray do the same
for sets and arrays, respectively. PickTree produces a tree by using
other pickers for selecting its depth, node degree and node contents.
HypercubePicker generates a point within a hypercube of given
dimensions, and HypershperePicker generates an n-dimensional
point on a hypersphere, given a radius r and n − 1 angles.

The library also includes a few pickers producing elements that
simulate some behavior. MarkovChain, as its name implies, per-
forms a walk in a Markov chain and, upon each transition, produces
an object by asking the picker associated to the state it reaches.
BehaviorTree does the same for a path in a behavior tree. Grammar-
Picker generates sequences of symbols picked from a set defined
by a context-free grammar.

Finally, some pickers have special behavior that can be useful:
Constant always returns the same predefined value; Nothing im-
mediately throws a NoMoreElementException when asked for a
value; Freeze requests a value from another picker a single time,
and then repeatedly returns this value; Playback returns a prede-
fined sequence of values by iterating over a fixed list. Scramble
asks for a variable number of values from another picker, shuffles
their ordering and plays them back in that modified order. Finally,
PickIf acts as a form of filter: upon a call to pick, it repeatedly
asks for values from another picker, until one is found that satisfies
an arbitrary user-defined condition.

In addition to the pickers already provided by Synthia, users can
define custom ones by simply writing a new class implementing
the Picker interface. Once defined, this picker can be passed as the
argument of other pickers.

Wiring Pickers. A core feature of Synthia is the fact a picker
may be instantiated by passing to it one or more other pickers.
Intuitively, this represents the fact that this picker must make a
number of “choices” when producing an output object, and that
these choices are based on the values produced by other pickers
when they are queried. Thus, a given generator for a set of val-
ues may be defined as a form of “wiring diagram”, making explicit
the way in which pickers are composed. Given that each picker
is deterministic (including pseudo-random generators for a given
seed), the wiring diagram therefore unambiguously defines the
exact sequence of values produced by successive calls to the down-
stream picker, favoring the reproducibility of experiments that are
conducted on a synthetic dataset.

In order to illustrate the flexibility offered by Synthia in generat-
ing even simple objects, consider the diagrams shown in Figure 1,
which show scenarios where two-dimensional points are produced
by an HyperSpherePicker, represented at the bottom of each fig-
ure.3 What differs is how the two sources required by this picker
(one for a radius r and another for an angle θ) are created. For
each point, Variation 1 selects a radius of either 1 or 2. A random
floating-point x between 0 and 1 is also selected, to which the affine
transform 2πx + 0 is then applied. The end result is that each point
lies at any angle between 0 and 2π on the circle of radius 1 or 2.
The two plots at the bottom represent the first few possible values
one could obtain by starting from a different random seed.

The remaining diagrams show the effect of wiring the Hyper-
spherePicker in a different way. Variation 2 fixes the angle to 3π/2,
and picks the radius according to a normal distribution, resulting in
points clustered close to the origin. Variation 3 shows the use of the
Freeze picker: a random float value between 1 and 3 is picked for
the radius, and this radius will then be used for all points produced

3Each picker class is represented by a distinct pictogram; the legend for each pictogram
is available in the online API documentation (https://liflab.github.io/synthia/javadoc).

Synthia: a Generic and Flexible Data Structure Generator ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA

RandomInteger ri = new RandomInteger(0, 2).setSeed(42);

Constant<Float> c1 = new Constant<>(1 / 6f);

Tick radius = new Tick(ri, c1);

RandomFloat rf = new RandomFloat().setSeed(42);

Choice<Double> start = new Choice<>(rf).add(0d, 0.25)

.add(PI / 2, 0.25).add(PI, 0.25).add(3 * PI / 2, 0.25);

Constant<Float> c2 = new Constant<>(1 / 6f);

Tick angle = new Tick(start, c2);

HyperspherePicker hp = new HyperspherePicker(radius, angle);

for (int i = 0; i < 100; i++) {

Utilities.print(System.out, hp.pick());

}

Figure 2: The source code producing the points in Figure 1d.

by the HyperspherePicker. The angle is randomly selected among
four values lying at intervals of π/2. As a result, different seeds will
produce sets of points lying at a different distance from the origin,
but the same distance for each picker instance. Finally, Variation
4 shows the use of the Tick picker. The radius of the first point
is either 0 or 1, and each successive radius increments by a fixed
amount of 1/6. The starting angle is randomly selected between
four values, and each successive angle is incremented by a fixed
amount of π/6; this results in a spiral pattern with slight variations
depending on the starting seed. Each of the diagrams above corre-
sponds to less than 10 lines of Java code.4 Figure 2 shows the code
for Variation 4.

This simple example involved only a few basic pickers; however
one can see the potentially complex objects and patterns one can
create by composing existing and custom pickers.

3 ADVANCED FEATURES
We now enumerate some of the distinctive functions of the library.

Explainability. Synthia incorporates functionalities for explain-
ing the values produced by a chain of pickers. It leverages an exist-
ing library called Petit Poucet [4], which allows one to point to a
part of an output produced by some object, and to retrace it back
to parts of the inputs that contributed to the production of that
value. In the terminology of Petit Poucet, a designator is an object
used to refer to a particular part of the input or output of a given
computation. A relationship between a part of an output and one
or more parts of the input is called an explanation. An object that
can provide such an explanation implements an interface called
Queryable, which declares a single method called query.

In Synthia, each value produced by a picker is uniquely desig-
nated by its index in the sequence of successive calls to pick. If a
picker produces a given output object based on values provided by
other (upstream) pickers, it can link this output to the indices of
the corresponding inputs. This process can be repeated all the way
up to the roots of the chain of connected pickers, resulting in an
explanation graph retracing the precise values of each picker along
the path that contributed to the generation of a given object.

Figure 3 shows an example of this feature. On the left, a chain
of pickers is instructed to generate a list of four two-dimensional
points using a PrismPicker, with constraints on their possible
values. The x coordinate starts at 0 and increments by a fixed value
4API documentation and code examples: https://liflab.github.io/synthia/javadoc/

[1,2]

42

s δ [0,1,-1]

x y

4x ≠ y

0

[(2,-1),(3,0),(4,1),(5,-1)]

(a) Wiring

1∘1

1

3

33

1

[0,1,-1] 3

11

0

2 2

1

1

-1

(b) Explanation

1∘1

1

2

22

[0,1,-1] 2 11

1

0

1

2

1

(c) Other explanation

Figure 3: A wiring of pickers producing a list of four points,
and two explanation graphs for the first point in the list.

that is initially chosen to be either 1 or 2; they coordinate repeatedly
iterates through the values 0, 1 and −1; a PickIf removes any point
lying on the line x = y. A possible first output of this chain is the
list shown at the bottom. Explanations are fine-grained: a graph
can be built for a given part of this output, such as the first pair of
numbers inside the list. One can then ask for an explanation of the
first point inside the list by passing the designator 1 ◦ 1 (meaning
“the first element of the first output”) to the picker through a call to
a special method named query. This picker links this value to the
output produced by other pickers, ultimately producing the graph
shown on Figure 3b.

Each node in the graph corresponds to one picker from the chain
on the left, and next to each is written the designator corresponding
to one of their output values. By examining this graph, one can see
that the first point of the list is actually the third generated by the
PrismPicker; the first two (the points (0, 0) and (1, 1)) having been
rejected by the filter. Since the Tick picker produces a value by
incrementing the previous one, the third output of Tick depends
on the second one and the second value produced by Freeze. As
expected, all values produced by this picker emanate from a single
pick from RandomInteger. Leaves of this graph are labeled with the
concrete values produced by a given picker. Note how this structure
is dynamic and depends on the actual values produced; Figure 3c
shows an alternate explanation, which is what one obtains when
RandomInteger picks the value 2 instead of 1.

This graph is not a static template obtained from the wiring
of pickers; to illustrate this fact, Figure 3c shows an alternate ex-
planation, which is what one obtains when RandomInteger picks
the value 2 instead of 1; the output list becomes [(2, 1), (4,−1),
(6, 0), (8, 1)]. Note how the explanation graph has a slightly differ-
ent structure, and that the relative indices of output values in some
pickers are not the same.

Bounded Pickers and Enumerations. By default, most pickers are
assumed to be unbounded: they can always return a value on each
call to pick. Synthia also provides an interface called Bounded<T>,
which declares a method called isDone. A bounded picker acts
like a classical Iterator: it produces output values until a call
to isDone returns false. Some pickers are bounded by definition,
such as Playback and PickUntil. An alternate way of obtaining
a bounded picker is by wrapping an unbounded picker inside a

ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA Marc-Antoine Plourde and Sylvain Hallé

Bound object; this picker first selects a number of elements, and
then relays values obtained from another picker until the bound is
reached.

Since bounded pickers can be assimilated to a finite enumer-
ation, combinations of values for multiple such pickers can also
be enumerated. This is the task of the Enumerate picker: given a
list of n pickers (which may be of different output types), calls to
pick will produce an array of n values (one from each input picker)
such that all combinations of values from each picker eventually
occurs. This is possible due to the property that calling reset on a
bounded picker once isDone returns true restarts its sequence of
values from the beginning, and in the same order.

The use of Enumeratemakes it possible to easily generate values
for a test procedure that exhaustively explores the value space
induced by multiple input parameters. If connected to the input of a
Scramble picker, one can also make sure that the combinations are
enumerated in a (pseudo-)random fashion. As unbounded pickers
can be turned into bounded ones, the opposite operation is also
possible. A bounded picker p can be wrapped into a picker called
Unbound. This picker simply relays the output values of p, until a
call to isDone returns false. From this point on, subsequent calls to
pick select one of the values returned by p in the past.

Knitting. A special picker called Knit makes it possible to in-
terleave the output of multiple pickers. The Knit picker must be
instantiated by passing to it a picker of pickers p (that is, a picker
producing Picker<T> objects). Upon every call to pick(), Knit
proceeds as follows. First, it flips a (biased) coin to decide whether
to create a new instance of Picker<T>; if so, it calls p.pick() and
adds the resulting picker instance to its set of “living” pickers. Then,
it selects one of the living pickers, and returns the object resulting
from a call to pick() on that picker. If this picker cannot produce a
new value (e.g. it throws a NoMoreElementException), it is consid-
ered “dead” and is removed from the set of living pickers. In such a
case, Knit flips a coin to decide whether to create a new instance
of Picker<T>; if so, it calls p.pick() and adds the resulting picker
instance to its set of “living” pickers, and the process repeats. This
picker is especially useful to generate sequences of events produced
by multiple entities that follow an independent lifecycle. For exam-
ple, a MarkovChain picker could be configured to simulate possible
sequences of pages visited by a user in a website; passing it to Knit
results in an interleaved sequence of page requests for multiple
visitors, similar to a real-world web server log. A variant of Knit
has been used to simulate the trajectories of two-dimensional balls
in a virus contagion simulator.5

4 TESTING FACILITIES
Given its nature as a data structure generator, a natural use case
for Synthia is as a provider of test inputs. To this end, the library
provides a few facilities geared towards its use in a testing context.

Object Mutation. Some classes defined in Synthia are called mu-
tators: they are pickers that receive an object, apply an elementary
transformation on it, and return the “mutated” object. Mutators can
be appended to a chain of pickers producing valid inputs, and turn
them into invalid ones by slightly altering them. What mutation

5https://github.com/sylvainhalle/virus-contagion

[, ,]
A

B

[]
[]

[,]

42+

42

b
0

c

42

a

0
[]

42

0 42
[]+

3

42

1

2

Figure 4: Instantiating a mutator for a list.

is performed, and how it is applied may, again, depend on values
produced by other pickers.

A simple example is the Offset picker, which receives a number,
and shifts its value by an amount specified by the output of another
picker, thereby simulating noise or uncertainty. For instance, it can
be used to insert some amount of noise or uncertainty in a source
of otherwise precise values. Another simple mutator is Replace:
when it receives an object, it outputs instead a value produced by
another picker; its usefulness will be made clearer in later examples.
Synthia also provides mutators for composite data structures, such
as lists. DeleteElement receives a list and selects an element to
remove; InsertElement chooses a position where a value provided
by another picker is to be inserted; Swap selects two elements and
inverts their position in the list. In addition, some mutators take
as one of their parameters a picker producing another mutator.
This is the case of the Mutate picker: it asks for an object o and a
mutatorm, and returns the application ofm on o. The same goes
for MutateElement: for a list where elements are of given type T ,
the picker is given an arbitrary mutatorm forT , selects an element
e of the input list, and replaces it by the application ofm on e .

Figure 4 shows an example of the flexibility of this design. The
diagram culminates into a Mutate picker (box A) that receives as
one of its inputs an arbitrary list of numbers (not shown). The picker
that provides a mutator for each list is a Choice (box B), which
may pick one of three possible mutators, represented by boxes 1–3.
The first is an instance of MutateElement, whose mutator picker
is another Choice (box a), selecting either an Offset (box b) or a
Replace feeding the constant value 0 (box c). The other two list
mutators are instances of Swap (box 2) and DeleteElement (box
3). All these pickers use a distinct RandomFloat as their source of
randomness for making their respective choices. The end result
is that, for every list given to the picker of box A, three equally
probable outcomes are possible: (1) one element is chosen (box 1),
and, with equal probability (box a), is either offset by a random
value in [0, 1] (box b), or replaced with 0 (box c); (2) the first element
is swapped with another one (box 2); (3) one element is deleted
(box 3).

Test Reduction. In addition to generating test inputs (either from
random sources or otherwise), the library can also be used to search
for simpler inputs once a failing test case has been found, following
the shrinking principle found in the QuickCheck framework [1]
and its Java derivatives like JUnit-QuickCheck [5]. An interface
called Shrinkable extends the basic Picker interface by providing

Synthia: a Generic and Flexible Data Structure Generator ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA

an additional method called shrink. Each shrinkable picker p im-
plementing Shrinkable assumes a certain partial order ⊑ over the
elements of T . If the picker originally returns elements from a do-
mainT ′ ⊆ T , for a given t ∈ T , a call to p.shrink(t) returns a new
picker instance p′; it is not necessarily an instance of the same class
as p, but it guarantees that its values are in {t ′ ∈ T ′ : t ′ ⊏ t}. By
virtue of composition, objects that are generated through a wiring
of Shrinkable pickers can be shrunk automatically.

This mode of shrinking is different from QuickCheck implemen-
tations in a fundamental aspect: it is the pickers that are shrinkable,
and not the values they produce; thus, shrink returns a new picker,
and not a (finite) collection of pre-shrunk values. At any moment,
this picker can be used as a drop-in replacement for the original
picker without any other modification to the setup. Moreover, the
picker truncates the domain of the original picker, but otherwise
preserves its properties. For example, if a picker p produces odd
numbers, a call to p.shrink(15) will result in a picker instance
that still produces odd numbers, and not just any number smaller
than 15. In the same way, if a GrammarPicker p produces a se-
quence of objects s according to a BNF grammar, then p.shrink(s)
produces a picker that returns sub-sequences of s that are still valid
according to the grammar, and not just any sub-sequence of s . This
characteristic extends to any shrinkable picker.

In addition, the shrinking process propagates: a picker that pro-
duces a value depending on the output of another picker may re-
quest a shrunk version of this picker upon its own call to shrink.
Consider a picker producing a list whose length is provided by
applying 2x + 1 to the integer value produced by another picker.
Upon a call to shrink with the list [3, 1, 4, 1, 5, 9, 2], of length 7,
this picker will request from its upstream source a shrunk instance
producing values lower than (7 − 1) ÷ 2 = 3. Note that this will
result in lists whose length y still follows the relation y = 2x + 1,
but having fewer than 7 elements.

This design still provides flexibility in how the shrunk version of
the picker is produced. Upon a call to pick(t), simple pickers, such
as one for integers in the range [a,b], may merely return a new
instance of the same class with different parameters (e.g. the range
[a, t]). In other cases, the designer of a custom picker object may
elect to return a Playback picker enumerating a fixed set of values,
thereby reproducing the behavior of JUnit-QuickCheck. If for some
reason, no “smaller” value than t can be obtained, a picker can also
return an instance of Nothing. A picker p that does not implement
Shrinkable<T> can also still be shrunk under some conditions. If
T is a type that implements the Java Comparable interface, p can
be wrapped within a PickSmaller picker. This picker provides a
“poorman’s” shrinkingmechanism: given a reference element t , this
picker repeatedly asks for an element t ′ from p until one is found
such that t ′ ⊏ t (calculated using class T ’s method compareTo).

Test Automation. Finally, Synthia offers two classes to automate
the test-and-shrink process on an abstract system. An interface
called Testable declares a method called test taking an array of
objects (the inputs of a test case) and returning a Boolean value
(representing the test’s verdict). An object called Assert is instan-
tiated with the pickers that supply parameters, and a Testable
object. It takes care of generating inputs until a combination causes
test to return false; once this is done, a shrunk version of the

original pickers is obtained, and the process repeats. This operation
stops if the resulting pickers throw either a GiveUpException or a
NoMoreElementsException. The last value causing the condition
to fail can then be queried with getShrunk.

Contrary to existing QuickCheck implementations, which shrink
a single test input, Assert can apply shrinking on test cases taking
multiple input values. This can be done by encapsulating all input
parameters within a PickArray, and using its built-in shrink fea-
ture. In such a case, a shrunken test input is any combination of
inputs for which each parameter is equal or smaller to the corre-
sponding parameter in the original failing test case.

A similar functionality is also available for reactive components,
which are tested by performing a sequence of actions, each result-
ing in a change of state of the system. The Action interface defines
a single method called execute, representing the abstract notion of
submitting an “action” to a reactive system; for example, a possible
concrete action could be a button click on a GUI widget. The Monkey
object provided by Synthia takes as input a picker producing actions,
and a Resettable object. It starts with a discovery phase, repeat-
edly picking actions from the and performing them one by one. As
soon as an exception is caught, the sequence of actions performed
so far is stored and the object under test is reset. The monkey then
enters a shrinking phase, where shorter sub-traces of the original
are repeatedly generated and tested. Whenever a shorter sequence
still throws an exception, this sequence replaces the original, and
the shrinking process restarts from this new reference.

5 CONCLUSION
In this paper, we have shown how Synthia allows the genera-
tion of synthetic data structures in a modular fashion. Its pow-
erful functionalities rely on a handful of simple abstract interfaces
(e.g. Picker, Shrinkable, Testable, Resettable, Bounded and
Action), which can be implemented by classes in order to gener-
ate, mutate or test input data on an arbitrary object. Case in point,
Synthia has been used in recent scientific publications to simulate
conference program committees [3], produce sequences of events
to illustrate an event stream processor [2], generate web pages with
layout faults [6], and create synthetic logs to test a monitor [10].

REFERENCES
[1] K. Claessen and J. Hughes. QuickCheck: a lightweight tool for random testing of

Haskell programs. In ICFP, pages 268–279. ACM, 2000.
[2] S. Hallé. Explainable queries over event logs. In EDOC, pages 171–180. IEEE,

2020.
[3] S. Hallé. Computer simulations of scientific peer reviewing. IEEE Access, 9:111595–

111607, 2021.
[4] S. Hallé and H. Tremblay. Foundations of fine-grained explainability. In CAV,

volume 12760 of LNCS, pages 500–523. Springer, 2021.
[5] P. Holser. JUnit-Quickcheck. https://github.com/pholser/junit-quickcheck, Ac-

cessed October 13th, 2021.
[6] S. Jacquet, X. Chamberland-Thibeault, and S. Hallé. Automated repair of layout

bugs in web pages with linear programming. In ICWE, volume 12706 of LNCS,
pages 423–439. Springer, 2021.

[7] V. J. M. Manès, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz, and M. Woo.
The art, science, and engineering of fuzzing: A survey. IEEE Trans. Softw. Eng.,
pages 1–1, 2019.

[8] T. J. Santner, B. J. Williams, and W. I. Notz. The Design and Analysis of Computer
Experiments. Springer series in statistics. Springer, 2003.

[9] D. Spadini, M. F. Aniche, M. Bruntink, and A. Bacchelli. Mock objects for testing
Java systems. Empir. Softw. Eng., 24(3):1461–1498, 2019.

[10] R. Taleb, R. Khoury, and S. Hallé. Runtime verification under access restrictions.
In FormaliSE@ICSE 2021, pages 31–41. IEEE, 2021.

